.Ensure compatibility along with several structures, including.NET 6.0,. Web Framework 4.6.2, and.NET Criterion 2.0 and also above.Lessen addictions to stop version problems as well as the need for binding redirects.Transcribing Sound Info.One of the main performances of the SDK is audio transcription. Developers can easily record audio reports asynchronously or even in real-time. Below is actually an instance of exactly how to record an audio documents:.making use of AssemblyAI.using AssemblyAI.Transcripts.var client = new AssemblyAIClient(" YOUR_API_KEY").var records = wait for client.Transcripts.TranscribeAsync( new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3". ).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).For local area reports, similar code can be made use of to achieve transcription.wait for using var stream = brand new FileStream("./ nbc.mp3", FileMode.Open).var records = wait for client.Transcripts.TranscribeAsync(.stream,.brand-new TranscriptOptionalParams.LanguageCode = TranscriptLanguageCode.EnUs.).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).Real-Time Audio Transcription.The SDK additionally sustains real-time sound transcription making use of Streaming Speech-to-Text. This function is actually especially useful for applications needing instant processing of audio information.using AssemblyAI.Realtime.await utilizing var scribe = brand new RealtimeTranscriber( new RealtimeTranscriberOptions.ApiKey="YOUR_API_KEY",.SampleRate = 16_000. ).transcriber.PartialTranscriptReceived.Subscribe( records =>Console.WriteLine($" Limited: transcript.Text "). ).transcriber.FinalTranscriptReceived.Subscribe( transcript =>Console.WriteLine($" Ultimate: transcript.Text "). ).await transcriber.ConnectAsync().// Pseudocode for receiving audio coming from a mic for example.GetAudio( async (chunk) => wait for transcriber.SendAudioAsync( part)).wait for transcriber.CloseAsync().Making Use Of LeMUR for LLM Functions.The SDK incorporates with LeMUR to enable programmers to create large language version (LLM) apps on voice data. Here is an example:.var lemurTaskParams = new LemurTaskParams.Trigger="Provide a quick review of the records.",.TranscriptIds = [transcript.Id],.FinalModel = LemurModel.AnthropicClaude3 _ 5_Sonnet..var feedback = wait for client.Lemur.TaskAsync( lemurTaskParams).Console.WriteLine( response.Response).Sound Intelligence Styles.Additionally, the SDK comes with integrated assistance for audio cleverness styles, allowing feeling review and various other state-of-the-art features.var transcript = await client.Transcripts.TranscribeAsync( brand-new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3",.SentimentAnalysis = accurate. ).foreach (var lead to transcript.SentimentAnalysisResults!).Console.WriteLine( result.Text).Console.WriteLine( result.Sentiment)// POSITIVE, NEUTRAL, or even downside.Console.WriteLine( result.Confidence).Console.WriteLine($" Timestamp: result.Start - result.End ").To read more, see the official AssemblyAI blog.Image resource: Shutterstock.